Innovative Structural Construction Methods

The following figures were extracted from:

INNOVATIVE ALTERNATIVES TO CONVENTIONAL LEVEES FOR FLOOD PROTECTION

Report Submitted to:

U. S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

and

The Office of The Chief of Engineers Directorate of Civil Works 20 Massachusetts Avenue N.W. Washington, D.C. 20314-1000

Report Submitted by:

J. Michael Duncan, James K. Mitchell, Christian Lovern, James Coffey

Department of Civil Engineering Virginia Tech Blacksburg, Virginia 24061-0105

15 December 1997

Portadam

Flood Control Method:

PORTADAM

Portadam During Construction, Field

5 people, 4 hours

Portadam After Construction, Field

Shallow Cellular Confinement Systems

RDFW Construction, Field

6-8 People, 7 hours

Gabion/Earth-Fill Levee

Flood Control Method: GABION/EARTH-FILL DIKES

Hesco Bastion Hydrodynamic Test, Laboratory

Hesco Bastion During Construction, Field

6-8 people, 7 hours

Aluminum Stop-Log Levee

Flood Control Method: ALUMINUM STOP-LOG DIKES

Source: GOH Brochure

Composite Interlocking Walls

Air-Inflatable Rubber Bladders

Flood Control Method:

AIR-INFLATABLE RUBBER BLADDERS

Sketch:

Photo: Obermeyer Hydro, Inc.

Photo: Atlantic Fluid Technology Associates

Sumigates used for flood control in Japan

Photo: Rodney Hunt Company

Steel Gate Panels with Air-Inflatable Bladders

Flood Control Method: STEEL GATE PANELS WITH AIR-INFLATABLE BLADDERS

Sketch:

Source: Obermeyer Hydro, Inc.

Modular Retaining Wall Systems

Flood Control Method: MODULAR RETAINING WALL SYSTEMS

Sketch:

Source: Doublewal Brochure

Source: T-Wall Brochure

Soil-Cement Levees

Flood Control Method: SOIL-CEMENT LEVEES

Con-Span Precast Bridge Segments Placed on Sides

Sloped Mechanically Stabilized Earth Levees

Flood Control Method: SLOPED MECHANICALLY STABILIZED EARTH LEVEE

Sloped Mechanically Stabilized Earth Levee

Reinforced Earth, Panel-Faced Levees

Flood Control Method:

REINFORCED EARTH, PANEL-FACED DIKES

Asphalt Concrete-Faced Embankment Levees

Flood Control Method: ASPHALT CONCRETE-FACED EMBANKMENT LEVEE

Strong Points (cont'd): Mastic coating can be applied after placing asphalt concrete for additional

decrease in permeability

Most applicable when the embankment fill consists of high or uncertain permeability soils, armor material is expensive, limited construction time is available, or the importing of impermeable soil is not cost effective.

Problems: Expensive initial cost

Maintenance required Not aesthetically pleasing

Limited historical use, mostly European

EPS Foam-Filled Levees

Flood Control Method: EPS FOAM-FILLED LEVEES

Sketch:

Cross-section: River Torne Embankment Levees Constructed with Geoform Cores

Source: Intl Symposium on EPS Construction Method

I-walls and Inverted T-walls

Flood Control Method: I-WALLS AND INVERTED T-WALLS

Sketch:

of Engineers

Source: U.S. Army Corps of Engineers EM 1110-2-1913